Infiammazioni

Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress.

Abstract

Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction

The endocannabinoid system: an emerging key player in inflammation.

Abstract

PURPOSE OF REVIEW:
The purpose of this review is to illustrate the expanding view of the endocannabinoid system (ECS) in relation to its roles in inflammation.
RECENT FINDINGS:
According to the formal classification, the ECS consists of two cannabinoid receptors, their endogenous fatty acid-derived ligands, and a number of enzymes involved in their synthesis and breakdown. However, many endogenous congeners of classical endocannabinoids have now been discovered, together with a set of receptors structurally or functionally related to the cannabinoid receptors.
Anti-inflammatory role of cannabidiol and O-1602 in cerulein-induced acute pancreatitis in mice

Abstract

BJECTIVES:
The anti-inflammatory effects of O-1602 and cannabidiol (CBD), the ligands of G protein-coupled receptor 55 (GPR55), on experimental acute pancreatitis (AP) were investigated.
METHODS:
Acute pancreatitis was induced in C57BL mice by intraperitoneal injection of 50 μg/kg cerulein hourly, with a total of 6 times. Drugs (O-1602, 10 mg/kg, or CBD, 0.5 mg/kg) were given by intraperitoneal injection 2 times at 30 minutes before the first injection and immediately before the fifth cerulein injection.

Cannabinoids, endocannabinoids, and related analogs in inflammation.

Abstract

This review covers reports published in the last 5 years on the anti-inflammatory activities of all classes of cannabinoids, including phytocannabinoids such as tetrahydrocannabinol and cannabidiol, synthetic analogs such as ajulemic acid and nabilone, the endogenous cannabinoids anandamide and related compounds, namely, the elmiric acids, and finally, noncannabinoid components of Cannabis that show anti-inflammatory action. It is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation.
Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

Abstract

Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury.
Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors.

Abstract

Certain types of nonpsychoactive cannabinoids can potentiate glycine receptors (GlyRs), an important target for nociceptive regulation at the spinal level. However, little is known about the potential and mechanism of glycinergic cannabinoids for chronic pain treatment. We report that systemic and intrathecal administration of cannabidiol (CBD), a major nonpsychoactive component of marijuana, and its modified derivatives significantly suppress chronic inflammatory and neuropathic pain without causing apparent analgesic tolerance in rodents. The cannabinoids significantly potentiate glycine currents in dorsal horn neurons in rat spinal cord slices.
Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis.

Abstract

Enteric glial cells (EGC) actively mediate acute and chronic inflammation in the gut; EGC proliferate and release neurotrophins, growth factors, and pro-inflammatory cytokines which, in turn, may amplify the immune response, representing a very important link between the nervous and immune systems in the intestine. Cannabidiol (CBD) is an interesting compound because of its ability to control reactive gliosis in the CNS, without any unwanted psychotropic effects.
Diabetic retinopathy: Role of inflammation and potential therapies for anti-inflammation.

Abstract

iabetic retinopathy is a leading cause of blindness among working-age adults. Despite many years of research, treatment options for diabetic retinopathy remain limited and with adverse effects. Discovery of new molecular entities with adequate clinical activity for diabetic retinopathy remains one of the key research priorities in ophthalmology.
Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement.

Abstract

Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to be involved in the etiology of pathological features of Alzheimer’s disease (AD). Cannabidiol (CBD), a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible for such actions remains unknown. This study was aimed at exploring whether CBD effects could be subordinate to its activity at PPARγ, which has been recently indicated as its putative binding site.
Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption.

Abstract

A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-kappaB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs).

Vanilloid TRPV1 receptor mediates the antihyperalgesic effect of the nonpsychoactive cannabinoid, cannabidiol, in a rat model of acute inflammation.

Abstract

Cannabidiol (CBD), a nonpsychoactive marijuana constituent, was recently shown as an oral antihyperalgesic compound in a rat model of acute inflammation. We examined whether the CBD antihyperalgesic effect could be mediated by cannabinoid receptor type 1 (CB1) or cannabinoid receptor type 2 (CB2) and/or by transient receptor potential vanilloid type 1 (TRPV1).
Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death.

Abstract

The platinum compound cisplatin is one of the most potent chemotherapy agents available to treat various malignancies. Nephrotoxicity is a common complication of cisplatin chemotherapy, which involves increased oxidative and nitrosative stress, limiting its clinical use. In this study, we have investigated the effects of a nonpsychoactive cannabinoid cannabidiol, which was reported to exert antioxidant effects and has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in patients in a mouse model of cisplatin-induced nephropathy.
Cannabinoids in clinical practice.

Abstract

Cannabis has a potential for clinical use often obscured by unreliable and purely anecdotal reports. The most important natural cannabinoid is the psychoactive tetrahydrocannabinol (delta9-THC); others include cannabidiol (CBD) and cannabigerol (CBG). Not all the observed effects can be ascribed to THC, and the other constituents may also modulate its action; for example CBD reduces anxiety induced by THC. A standardised extract of the herb may be therefore be more beneficial in practice and clinical trial protocols have been drawn up to assess this. The mechanism of action is still not fully understood, although cannabinoid receptors have been cloned and natural ligands identified.