The role of the endocannabinoid system in atherosclerosis.


Our current understanding of the pathophysiology of atherosclerosis suggests a prominent role for immune responses from its initiation through its complications. Given the increasing prevalence of cardiovascular risk factors worldwide, there is an urgent need to better understand the underlying mechanisms to improve current treatment protocols. A growing body of evidence suggests that endocannabinoid signalling plays a critical role in the pathogenesis of atherogenesis and its clinical manifestations. Blocking CB(1) receptors has been shown to mediate not only weight reduction, but also several cardiometabolic effects in rodents and humans, indicating a potential relevance for the process of atherosclerosis

Cannabinoid receptors in atherosclerosis.


Recent findings suggesting that cannabinoid receptors are potential targets for the treatment of atherosclerosis are reviewed.
Cannabinoids, such as Delta9-tetrahydrocannabinol, the major psychoactive compound of marijuana, their synthetic analogs and endogenous cannabinoid ligands, produce their biological effects by interacting with specific receptors. In the apolipoprotein E knockout mouse model of atherosclerosis, Delta9-tetrahydrocannabinol was shown to inhibit disease progression through pleiotropic effects on inflammatory cells. Blocking of cannabinoid receptor CB2, the main cannabinoid receptor expressed on immune cells, abolished the observed effects.

The potential use of cannabidiol in the therapy of metabolic syndrome


annabidiol, a cannabinoid and serotonin receptor antagonist, may alleviate hyperphagia without the side effects of rimonabant (for example depression and reduced insulin sensitivity). Similar to the peroxisome proliferator-activated receptor-gamma agonists, it may also help the differentation of adipocytes. Cannabidiol has an immunomodulating effect, as well, that helps lessen the progression of atherosclerosis induced by high glucose level.